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An explanation of the dynamical mechanism for apse-

alignment of the eccentric Uranian rings is necessary before
observations can be used to determine properties such as

ring masses, particle sizes, and elasticities. The leading
model (Goldreich and Tremaine 1979) relies on the ring

self-gravity to accomplish this task, yet it yields equilib-

rium masses which are not in accord with Voyager radio

measurements. We explore po_ible solutions such that the

self-gravity and the coilisional terms are both involved in

the process of apse-alignment. We consider limits that cor-

respond to a hot and a cold ring, and show that pressure

terms may play a significant role in the equilibrium condi-

tions for the narrow Uranian rings. In the cold ring case,

where the scale height of the ring near periapse is compa-

rable to the ring particle size, we introduce a new pressure

correction pertaining to a region of the ring where the

particles are locked in their relative positions and jammed

against their neighbors, and the velocity dispersion is so

low that the collisions are nearly elastic. In this case, we

find a solution such that the ring self-gravity maintains

apse.alignment against both differential precession (m = 1
mode) and the fluid pressure. We apply this model to the

Uranian _ ring, and show that, compared to the previous

self-gravity model, the mass estimate for this ring increases

by an order of magnitude. In the case of a hot ring, where

the scale height can reach a value as much as fifty times

larger than a particle size, we find velocity dispersion pro-

files that result in pressure forces which act in such a way

as to alter the ring equilibrium conditions, again leading

to a ring mass increase of an order of magnitude; however,

such a velocity dispersion profile would require a different
mechanism than is currently envisioned for establishing

heating/cooling balance in a finite-sized, inelastic particle

ring. Finally, we introduce an important correction to the

model of Chiang and Goldreich (2000). These authors re-
lied on collisional forces in the last ,._ 100 m of a ,_ 10 km

wide ring to increase ring equilibrium masses by up to a

factor of _ 100. We show that their analysis leads to a

strong, artificial ring mass dependence on the adjustable

parameter A (the lengthscale over which the ring's optical

depth drops from order unity to zero at the edge). A cor-

rected treatment of ring edges that takes into account their

ridge-like structure retains the increase of ring mass of the

order of ,,, 100 for a 10 km wide ring, while exhibiting

weaker A dependence. We introduce shepherd satellites

and show that they can have an effect on equilibrium ring

masses and surface density profiles. We conclude it is likely
that a modified CG model can account for the masses of

narrow, eccentric planetary rings; however, the role of

shepherd satellites both in forming ring edges and in alter-

ing the streamline precession conditions near them needs

to be explored further. It is unclear whether such a model

allows for the possibility of rings with negative eccentricity

gradients.

1 Introduction

The nine main narrow Uranian rings are each less than 100

km wide, with moderate optical depths (> 0.3), and mostly

made of particles larger than centimeters. Most have been

found to be eccentric, inclined, and sharp edged (French et al.

1991). Because of Uranus' oblateness (d2 = 3.343 x 10 -s)

the pericenter of a ring particle will precess at a rate dependent

on its semimajor axis. As a result, particle orbits at the inner

and outer edges of the narrow ring should quickly misalign.

Therefore, the presence of such eccentric rings speaks unam-

biguously to the need for a mechanism to counter differential

precession.

The leading theory to explain ring equilibrium uses the

ring's own self-gravity to enforce ring particle apsidal align-

ment (Goldreich and Tremaine 1979). However, this theory

has run into trouble when confronted with observations, and

has failed to predict the dynamical behavior offing streamlines

or even to explain the overall state of some rings (Graps et al.

1995; Goldreich and Porco 1987). In particular, the surface

density implied by the self-gravity model is smaller than seems

plausible for the oL and/_ Uranian rings based on the apparent

particle size (Tyler et al. 1986; Gresh 1990). Furthermore, it

has been pointed out that with the low surface densities im-

plied by the self gravity model the torques exerted by inner

shepherd satellites would be insufficiently strong to confine

these two rings against drag from the distended exosphere of

Uranus (Goldreich and Porco 1987). Unfortunately, alternative

apse-alignment models have not been developed quantitatively

(Dermott and Murray 1980), or have been based on unrealistic

assumptions about the viscous stress tensor (Papaloizou and

Lin 1988).

Recent work by Chiang and Goldreich (2000) proposed

that the collisional forces near ring edges can increase the

mass of a 10 km wide ring by up to a factor of --, 100, making

it possible to reconcile the observational mass estimate for this

ring based on radio occultation constraints offing particle sizes

with the dynamical mass estimate based on the lack of differ-

ential precession. Their model allows for both positive and

negative ring eccentricity gradient, which is not easy to recon-

cile with the the observation that all narrow rings have positive

eccentricity gradients (considered as evidence in support of the

self-gravity model in the first instance).

In section 2 we look at the case of a cold ring in which

stresses build up due to particle jams (regions of the rings where

particles are locked in their relative positions with neighboring

particles). In section 3 we increase the velocity dispersion of

the ring and set constraints on its azimuthal behavior assuming

that collisional stresses alter the equilbrium conditions for apse
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alignment.Insection4wemodify the model of Chiang and

Goldreich (2000). In section 5 we present our conclusions and
discussion.

2 Cold Ring

A cold ring is one in which the scale height of the ring near

periapse is comparable to the ring particle size. Here we model

the effects of a ring particle jam on the overall dynamics of the

ring. We define a "jam" as a region of the ring where particles

stay in contact with each other, such that it is not valid to treat

particle collisions as pair-wise hard sphere interactions. As we

shall see, such a region would be characterized by enhanced

pressure terms.

Other publications have advanced the possibility of such

a state (Wisdom and Tremaine 1988). Unfortunately, they

contain unrealistic assumptions about the ring, such as the

treatment of ring particles as smooth spheres. The conditions

under which more realistic ring particles jam are not well

understood. Nevertheless, the increase in ring self-gravity

and optical depth as the ring converges will lead to a rapid
increase in the number of inelastic collisions and lower the

velocity dispersion (Mosqueira 1996), thus creating conditions

which may lead to a ring particle jam. For the purpose of this

paper, we will assume that a particle jam can take place in a

converging flow, and we will simply parameterize its vertical

extent in terms of:the local ring optical depth.

where R and pp are the particle radius and density, kc is the

viscosity flux parameter which measures the relative strength

of the fluid pressure and viscosity, and E -,_ 1011 dyne cm -2

is the elastic modulus of ice at temperatures comparable to

those of ring particles (Borderies et al. 1984) (in this context

particle collisions produce nearly elastic deformations of ice

(Hertz 1881)). Physically, these equations result from the

redistribution of the stress taking place at the area of particle
contact over their surface area.

Furthermore, the vertical pressure does not simply balance

the vertical acceleration of the fluid (Borderies et al. 1985).

If that were the case the ring would simply puff up, and the

stresses would never reach the values given by Eqs. (l) and (2).

Instead, we assume that, so long as ring stresses do not exceed

the yield modulus of ice, ring particles can be prevented from

moving to a higher plane by the surface roughness of their

nearest neighbors. That is, the jam itself can prevent particles

from moving not only in the ring plane but in and out of it as

well. By contrast, in a smooth sphere model the difference in

the vertical location of particle neighbors inevitably results in

forces that push particles to higher vertical positions, which

acts to hinder the formation of jams.

Next, we find the height integrated pressure tensor com-

ponents

p _ _ sin0'XPrr = 2h o - 2r/o_lq----)---),
(3)

2.1 Fluid Description

Streamlines in a perturbed ring can be characterized by an

azimuthal wavenumber of the distortion rn > 0 and a pattern

speed f/p. In a frame of reference which rotates with the

pattern speed we have r = a (1 -e(a)cos 0), where r is

the cylindrical radius, a is the semi-major axis, e << 1 is

the eccentricity, 0 = m(_b + A), and A i's the phase angle.

The Jacobian of the transformation between (r, 0) and (a, 0)

is given by J(a,O) = 1 -qcos(0+-/), in general qe =

qcos'y = tld_ae, and q-t = qsin7 = mae_. From here on

we will assume that 7 < < 1 and q __ q_.

In our model, the pressure in the jammed ring region is
not the result of distinct collisions. In the limit as collisions

become very numerous and gentle, we resort to a pressure

description wherein a given ring particle spends most of its

time in contact with its neighbors. We find the following

expressions for the pressure and viscosity in this tightly packed

region with low velocity dispersion tr

(1)

7/0 _ 0.01kcE R (p._____2) ] , (2)

P_o = 3hr/of_ 1 - 4/3q cos 0
j , (4)

where 12 = (GMp/as) 1/2 is the orbital frequency, Mp is the

planet's mass, a is the semi-major axis, and h is the jam's

scale height. The optical depth of such a ring is given by

7" = to�J, where 7-0 is the optical depth at quadrature. As

the ring converges, particles get closer together and the ring

density increases. Around unit optical depth it is possible for

particles near the midplane to jam. If the contraction continues

from that point a larger fraction of the ring, of vertical extent h,

will become jammed. We model this process by the heuristic

equation

h=R --)- - 1 (5)

where R is the particle radius. Roughly speaking, the above
equation simply describes the vertical extent or thickness of

the jammed region. Since not all ring particles need be in

the gridlocked vertical portion of the ring, this scale height

should not be confused with the actual ring scale heigh[ H,

which is determined by the combination of the ring's velocity

dispersion and the exclusion of volumes in the ring (Mosqueira

1996). The density of the ring within the jammed region

h is assumed to be the maximum attainable ring density or
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p = ppFF _ 0.33 g cm -a, where pp __ 0.5 g cm -a is

the density of a ring particle and FF is the maximum ring

filling fraction. It should be noted that, just as in the case

of the traffic jams we are all used to, the ring particle jam

will be over near 0 = 0, when the divergence of the mean

flow turns positive. That is, for simplicity we assume that the

jam takes place between the negative angle 0o and 0, where

cos00 = (1 - 7-o)/q and (1 -q) _< 7-0 _< 1.

Next, we use a two-streamline model of the ring (Borderies

et el. 1983) and define the viscous stress frequencies

(Al) 4 a f0° [ [sin0'_ /cos0"X]A2 =M,.aq2xa P_T\cosO] :t:2P_oLsinO) dO,
o

(6)

where Aa is half the thickness of the ring, and Mr is the mass

of the ring. Finally, the equilibrium conditions for the ring are

given by (Borderies et al. 1983)
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where 2Aw ° is the ring's apsidal shift, q ----aAe°/Aa, and

the libration frequency due to the ring's self-gravity is

(9)_ M,

Figure 1: Apsidal shift in degrees as a function of mass

for the ot ring that satisfy the equilibrium conditions (eqs.

(7) and (8)) for several choices of the viscosity coefficient

kc, which determines the relative strength of the pressure

and the viscosity. For small kc, larger masses correspond to

a more extended "jam" in the ring. As the jam lengthens

beyond O = 0 (the solution corresponding to larger values

of q), the Prr term begins to dominate the calculation of Al

and this leads to additional solutions at higher masses. For

the choice of kc = 1.2, a solution is found with a negative

apsidal shift (_ --1 °) and a mass (,_, 20Msg) that yields

a surface density consistent with the value obtained using

_occ = _ppRT" _ 30 g cm -2 with R = 100 cm. For the ot

ring e = 7.81 x 10 -4 , q = 0.45, and 7-0 = 0.55.

where

H(q2 ) _ 1- X/_ -q2

q2 V/_ _ q2
(10)

For the case that f_g >> [At[, JAil (negligible pressure ef-

fects) we obtain the self-gravity mass for the a ring M,g =

3.4 x 1016 gl using a perturbation parameter for the ring of

q ,-_ 0.45 and eccentricity of e = 7.81 x 10 -4. This corre-

sponds to a surface density _ 2 g cm -_, which is about an

order of magnitude smaller than the surface density given by

_o_ = 4/3ppRT- _ 30 g cm -2, using R = 100 cm and

7-0= 0.55, as favored by radio occultation observations of the

Uranian rings (Tyler et al. 1986; Gresh 1990), and pp = 0.5

g cm -_. Note that we implicitly assume that the elastic prop-

erties of the a ring particles are those of solid water ice.

1Note that this value for the ring mass was obtained using a 2
streamline model. As we will see later in section 4, the use of more

streamlines yields a smaller mass

In the case of the c_ ring, the lack of any measurable

differential opacity between wavelengths of 3.6 cm and 13

cm indicates a relative depletion of centimeter sized particles

(Gresh 1990). Furthermore, the proximity of this ring to the

planet and the extended nature of the planetary atmosphere

would make sub-centimeter sized particles short-lived (Gol-

dreich and Tremaine 1979). These arguments make it appear

very unlikely that the surface density of the c_ ring could turn

out to be as low as the self-gravity model indicates. This cir-

cumstance leads us to search for larger mass solutions to the

equilibrium Eqs. (7) and (8). In particular, we are interested

in solutions such that A2 >> I)_tI > 0 and A1 < 0. Such

solutions would make it possible to increase the dynamical

mass estimate of the ring while keeping the streamlines nearly

aligned (with a small negative apsidal shift as observed). Our

new pressure terms allow for them.

To find the contribution of the "jammed" region to .,_1and

A2 we estimate the velocity dispersion a in the region between

the negative angle 0o and 0, where the jam occurs. According

to Andrews' theory (Andrews 1930), collisions are nearly elas-
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tic when the impact velocity is v < v. _ 0.03 cm s- _. This is

also the approximate impact velocity at which the yield stress

of ice is reached (Borderies et al. 1984). Numerical experi-

ments indeed point to very low impact velocities in aring (Wis-

dom and Tremaine 1988; Richardson 1994; Mosqueira 1996;

Salo 1991) given a velocity dependent coefficient of restitution

e (Bridges et al. 1984), which is the factor by which the rela-

tive normal velocity is reduced after a collision. This velocity

turns out to be of the order of a large particle's escape velocity.

For a particle with radius R = 100 cm and density pp = 0.5

gm cm -a this velocity is _ 0.05 cm s -x. For the a ring a

typical relative velocity between two neighboring particles of

this size due to the velocity gradients in the fluid flow is of

order _ 0.02 cm s -z. This means that both the ring shear and

its convergence need to be considered when calculating the ve-

locity dispersion a (Brahic 1977). Because the jam takes place

in the ring region where the material is converging, we used

a 2 = v2.+(R_qsin O/J)2+R2f12(16q2-15+24J)/(8J2).

2.2 Cold Ring Results

Since the jam takes place just before periapse where 0 < 0, the

calculation for A2 involves a positive integrand Pr_ cos 0, thus

Eq. (6) shows that the jam's contribution to A2 is positive. In

general, As need not be small when compared to the libration

frequency f'/_g. This means that the jam can significantly alter

the calculation of the mass in the self-gravity model, contrary

to earlier treatments of the pressure terms. In fact, a positive

A2 means that a given ring perturbation will require a larger

ring mass to satisfy the equilibrium condition given by Eq.

(8) The case of At is somewhat more complicated. For small

negative angles the calculation of At is determined by the

positive P_s cos0 term, but as the jam increases in extent it

becomes possible for the P_r sin 0 term to provide a negative
contribution that dominates the calculation of A1 (hence the

turnover in the small kc curves in Fig. 1). It is this behavior of

At which makes the desired solution A2 >> [At[ with At < 0

possible.

Because the jam contribution to At is not necessarily large,

we need to consider the effects of the rest (non-jammed por-

tion) of the ring. That is, we need an estimate of the apsidal

shift provided by the ring as a whole. Such a calculation is

model dependent, but the choice does not affect the thrust of

the argument presented here. We choose an apsidal shift in the

absence of a particle jam of _ -3.5". We simply add the Aa

corresponding to this negative apsidal shift to the "jam" contri-

bution, and we find the solutions of the equilibrium equations.

These solutions turn out to be rather sensitive to the (unknown)

relative strength between the fluid pressure and viscosity (kc

in Eq. (2)). We choose some representative parameters and

show that it is possible for the actual ring mass to be many

times that of the self-gravity model. It should be noted that

in all fitted cases observational results yield negative apsidai

shifts which can be used to constrain the value of kc.

For small kc, larger masses correspond to a more extended

"jam" in the ring. As the jam lengthens for 0 < 0 away from

periapse (the solution corresponding to larger values of q), the

Prr term begins to dominate the calculation of M and this

leads to additional solutions at higher masses. For the choice

of k_ = 1.2, a solution is found with a negative apsidal shift

(_ -1 °) and a mass (_ 20 M,g) that yields a surface density

roughly consistent with _3o_, which is more than an order of

magnitude larger than _g = M_/(4_raAa) ,_ 2 gcm -2.

The perturbation parameter q for the ring fell between 0.45

and 0.5, which corresponds to a maximum h of OAR. The

jammed ring region occurred between 0 ° and a minimum of
.., _25 o.
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Figure 2: Apsidal shift as a function of mass for the ot ring

for several larger values of the viscosity coefficient. Here we

demonstrate that it is possible to relax our assumptions on kc

and obtain lower mass solutions (still several times the self-

gravity mass) for the ring. In order to obtain these solutions,

we must choose an alternate form of the scale height (Eq.

(11)) where the peak stress values occur away from closest

approach. This essentially means that the largest fraction of

particles that become jammed occurs far from 0 -- 0. Larger

masses correspond to a more extended pinch in the ring, and

larger values of q. Masses larger than roughly 6 times the self

gravity mass (long-dashed curve) are not possible with this

form of the scale height since the integrals over the pressure

tensor approach a limiting value. As one increases kc, h

becomes more sharply peaked.

2.3 Other Jam Models

In order to explore the model dependence on the specific form
of the heuristic equation Eq.(5), we use the expression

(11)
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wheren is a positive integer. The idea behind this formula

is to shift the peak position of largest stress. By doing this,

the model allows for larger turnover values of kc while still

significantly increasing the ring's mass. In Fig (2), we plot the

corresponding results using this new heuristic expression. It

should be noted, however, that the mass increase is consider-

ably less than in our earlier model.

3 Hot Ring

Here we consider the possibility that the increased collisionai

stresses result from larger velocity dispersions in the fluid than

result from a straightforward balance of viscous heating terms

and inelastic collision cooling terms (Goldreich and Tremaine

1978). So long as the Bridges et al. coefficient of restitution is

assumed, equilibrium velocities on the order of ,_ 0.1 cm s-]

result, which are too small to lead to stresses that can affect ring

precession. Nonetheless, there are mechanisms that can con-

ceivably change the energy balance for a narrow ring such as

the presence of shepherd satellites, the presence of ring struc-

ture, large particles, and even global effects (Shu et al. 1985).

Here we search for a profile of the velocity dispersion that can

produce stresses leading to an order of magnitude increase in

the ring mass estimated for the c_ ring. We use the pressure

and viscosity expressions for local transport (Mosqueira 1996)

PO : 0.33po "2, (12)
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Figure 3: Velocity dispersion profiles for the ot ring. These

represent two examples of profiles that yield values for the

viscous frequencies Al and A2 such that the surface den-

sity of _ = 36 g cm -z, which is consistent with _occ. In

the solid curve (or oc l/J), the peak velocity occurs just

before /9 = 0. The dispersion velocity varies over the en-

tire ring with the minimum velocity occuring near apoapse.

In contrast, the dotted curve demonstrates that a velocity

dispersion with the opposite behavior may also fit the ring

mass. Here the maximum velocity occurs after /9 : 0 and

the minimum occurs just before periapse. However this fit re-

quires relatively little variation in velocity far from the apse,

and a steep transition from close densely packed particles

with dampened random velocities to the maximum disper-

sion velocities after 0 = 0. The resulting apsidal shift is

Aw ° _ --2 ° and the ring mass is ,,_ 20 M_ 9.

rio = O.033ppaR, (13)

where p = E/(2H) is the ring density, and we obtain the scale

height for the ring from the equation for hydrostatic balance

H = (-TrGE + ((TrGE) 2 + _2a213)1/2)/f_2, (14)

which takes into account the ring self-gravity (Mosqueira

1996).

3.1 Hot Ring Results

We find that, for sufficiently large velocity dispersions a, the

stress tensor can change the equilibrium conditions Eqs. (7-

8) in such a way as to lead to a ring mass consistent with

a surface density of ,-, 40 g cm -_ for the uranian a ring,

while still preserving ring alignment. In Fig. (3), we plot

two velocity dispersion profiles for the a ring that satisfy the

above requirements. Namely, both of these profiles yield the

same values for A1 = -7.63 x 10-]°s -1 and ,kz = 6.30 x

10-Ss -1. Furthermore, A2 _ l'2sg = 6.52 x 10-Ss -t.

While the dashed line satisfies the required equilibrium

conditions, it is a very unlikely profile and we wilt have nothing

further to say about it. For the solid line, the peak occurs before

periapse, and the scale height (Eq. (14)) can be as high as 50

times the particle size. This velocity profile is difficult to

justify on the basis of simple heating/cooling models. The

high velocity dispersion in regions of high optical depth are
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difficult to reconcile with cooling due collisions, since regions

of high optical depth lead to many more collisions. We tried

the presence of large particles as a heating mechanism that

would lead to extra heating in high optical depth regions, but

found that large particles are unlikely to produce the required

strong contrast between the velocity dispersion of high and

low density regions. There are, however, mechanisms, such as

heating due to ring structures forming in high density regions,

which might lead to such a velocity dispersion, but they are

difficult to characterize and we will not attempt to do so here.

4 Edge Effects

Recently, Chiang and Goldreich (2000) (hereafter CG) pointed

out that collisional forces felt by material in the last ,-_ 100 m

of a ,-, 100 km ring can increase the equilibrium masses up to

a factor of,-_ 100. If correct, their study can serve to reconcile

the observational constraints on ring surface densities with

theory, though it would raise anew the issue of why all narrow

planetary rings exhibit a positive eccentricity gradient.

Here we take a look at their model and show that their

model treats ridge-like edges improperly. Like these authors,

we divide the ring into N equally spaced, apse-aligned stream-

lines with constant q_ = aAe/Aa. The jth streamline has

mass mj, semi-major axis aj = a + [j - (N + 1)/2] Aa/N,

and eccentricity ej = e + [j - (N + 1)/2] Ae/N. For the

ring to maintain uniform precession the effects of the planetary

oblateness, self-gravity and interparticle collisions must coun-

teract one another. The contribution to differential precession

due to the planetary oblateness is

At _ =- J2f_ , (15)
o a

that of self-gravity is given by

d't;u

7re atMp_k#'Taj --ak'
(16)

where H(q2,) is found from eq. (10).

Also like CG, we ignore the decrease in velocity dispersion

from the ring edge at, _ 1 cm s-1 to the interior. This

assumption helped our numerical solutions to converge and

it is justified because the width of a satellite resonance is

of order w_ _ a(M_/Mp) */2 ,-_ 1 km, which covers the

region of the ring where surface density gradients are strong

(though some of our results would be marginally altered by

using a lower velocity dispersion tn _ 0.1 cm s -1 in the

ring interior; in particular, the ring surface density away from

the edges would increase). CG treated each ring edge by

introducing a linear collision term for edge streamlines. Their

treatment, however, implicitly assumes that the edges are one

sided surface density drops, whereas the result of their analysis

leads to ridge-like edges with strong density gradients present

on both sides of the density peak at each ring edge. As a

result, the surface density profiles in CG are inconsistent with

the assumption that went into producing them. Unlike CG, we

do not assume a linear collision term for the edge streamlines,

instead we use a boundary condition that fixes the relative

masses of edge streamlines and include a collision term based

on the local surface density gradient for all other streamlines.

The collisional acceleration for a ring particle is given by

VP trg dE.

C_ --_--- ,--, (1 -qecosf)E da r' (17)

where P is the height-integrated pressure and f is the true

anomaly. We then have

dw qe I,qe) b 1 d_ (18)
"-_ _ "_ F_ae _ da"

The collisional term is then given by

f_
aj--aj_ 1

k a i-a i+1 _

dw> _ 2 2
q*H(q_)ab x

At --_ _ f_aemj

ira < x = (j- 1/2)-_ < -_;

if _ < v= (g - j + l/2)-_ < -_;
(19)

Given the mass of the streamline just outside each bound-

ary we fix the mass of boundary streamlines (streamlines

within a distance A from either edge) using a simple fit given

by rnj = mj+le -a_/Nx, where the plus sign corresponds

to the inner edge and the minus sign corresponds to the outer

edge. Boundary streamlines do not enter in the system of

equations other than as a mass term in the self-gravity piece

and as a collision term for the two streamlines just outside each

boundary. Thus, we treat each edge as a density ridge. On one

side of the ridge the density drop is picked up by the boundary

condition, and on the other side of the ridge the density drop

is taken into account through the collision term.

The assumption is that the shepherd satellites alter the pre-

cession conditions of boundary streamlines in such a way as to

produce the needed drop off while preserving apse alignment.

Ultimately, proper treatment of the boundaries needs to in-

clude the effects of shepherd satellites. A fully self-consistent

calculation, however, is left for another paper.

4.1 Surface Density Profiles

The system of equations to be solved in the CG treatment are

linear in nature and can be readily solved by the use of matrix

inversion techniques. The CG system involves N equations

in N unknowns for the streamline masses m./which we solve

by way of an LU decomposition of the matrix of coefficients
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determinedusingtheself-gravityterm(Eq. 16). The decom-

position of this matrix into "lower" and "upper" triangular

matrices allows us to take advantage of the relative ease of

solving a triangular set of equations by forward and backward

substitution. In order to reproduce the results of CG for param-

eters appropriate for the _ ring, we typically used N = 3000

streamlines to ensure convergence.
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Figure 4: The CG solution for the _ ring with ab = 1 cm
s- ] is used here to demonstrate the inconsistent treatment

of the collisional precession terms near the ring edges. The

top panel shows the cr ring surface density at quadrature as

a function of distance from the from the ring's centerline.

The derivative of the surface density is taken from the CG

solution and used to generate a new surface density profile.

The top panel shows the original CG profile (dotted line).

The derivative of the surface density taken from the CG

solution is used to generate a new surface density profile,

which is then plotted (solid line). The bottom panel contains

the collisional precession terms used to generate each surface

density profile. The collisional terms are qualitatively and

quantitatively different leading to different surface density

profiles. Here q, _ 0.47 and the number of streamlines is

N ----3000.

The addition of our coilisional precession term to the sys-

tem leads to a non-linear set of equations, and thus a more

difficult problem to solve. In order to find solutions, we

must turn to root finding techniques. To this end, we em-

ploy the multi-dimensional secant method developed by Broy-

den (1965) which is globally convergent in almost all cases.

The method requires an initial guess for the mass distribu-

tion. The actual guess need not be close to the actual solution,

although good guesses are rewarded with much faster conver-

gence times. This approach reproduces the linear solutions

of CG regardless of the choice of mass distribution with little

effort. However, some care had to be taken for the non-linear

cases in order to avoid convergence to local minima. Once the

general shape of the solution was known, it could be used as

a first guess for different A, and for any choice of streamlines

N. A tolerance parameter for convergence of 1 x 10 -s was

used to ensure good accuracy in all non-linear cases.
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Figure 5: A comparison of results for the c_ ring using

the CG treatment as well as the treatment presented in this

study. We plot the surface density at quadrature as a func-

tion of distance from the ring's midline. We chose )_ = 500

m for the CG solution and )_ = 250 m for ours. This was to

ensure that the the density peaks were aligned. The presence

of our collisional precession term causes the density to dip

away from the boundaries. Note, however, that it never dips

below the self-gravity solution which is included for compar-

ison. We also show that both treatments allow for negative

qe solutions (where the perturbation parameter is the same

magnitude as the positive case). The value of qe _ 0.47,

ab = 1 cm s -1 , and the number of streamlines N = 500 for

our cases. The corresponding CG cases have N = 3000.

To illustrate the inconsistency in the CG treatment of the

boundary and motivate our own treatment, we take the deriva-

tive of the surface density profile generated by their collisional

term. Then making use of Eq. (18) we plug this derivative

back into the matrix as a collisional term and we generate a

new surface density profile. A self-consistent treatment would

yield a reasonably similar profile to the original one. Fig. (4)

shows that the CG treatment is not self-consistent in the above

sense. The bottom panel shows the collisional term for the

a ring (with A = ob/f_ " 40 m) taken from CG compared

to the derivative of the surface density profile at quadrature

obtained using their method. The top panel shows the original

surface density profile obtained by the CG method with the

density profile obtained by using the derivative of surface den-
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sityasacollisionalterm.It isclearthatthetwoprofilesarenot
quantitativelyorqualitativelysimilar.Mostsignificantly,their
collisionaltermtreatstheringedgeasadensitydropinstead
ofadensityridge,ascanbeseenfromthecomparisoninthe
bottomplot.
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that the CG solution is more sensitive to the specific choice

for A that our solution. The top plot shows the reason for this.

Increasing A makes our profiles flatter overall but the total ring

mass remains fairly constant. This a direct consequence of our
treatment of the collisional term.
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Figure 6: Variation of ring mass for the o ring as a function
of the number of streamlines N for our model. The mass

converges fairly quickly with the number of streamlines. The

change in mass between N = 500 nd N = 1000 is already

at the 1% level. For this case, A = 500 mandtrb = 1 cm
S -1 "

Fig. (5) is a comparison of _ ring results obtained using

CG treatment to our own and the self-gravity model. For more

meaningful comparison we chose different A values chosen in

such a way that the location of the density peaks align. In this

case we used a A = 500 m for the CG treatment and A = 250 m

for our treatment. The solid curve, which corresponds to

our treatment, dips much lower due to the presence of the

collisional term away from the boundaries, but it is always

above the value provided by the self-gravity solution. Our

treatment locates a larger fraction of the ring mass towards the

edges than that of CG. Had we included lower values for the

velocity dispersion in the ring interior (given by cri _ 0.1 cm

s- z) the shape of the solution would have changed somewhat,

however, due to solution convergence issues we have chosen

not to provide those results at this time. This plot also shows

that both models allow for negative q, solutions.

Fig. (6) shows convergence of our solution for the or ring

with the number of streamlines. Notice the scale of the plot.

Fig. (7) shows the results of runs where the value for

the parameter A was changed for the a ring from a value of

A ,'-, ab/f_ _ 50 m to a value of A _ 0.5w,- _ 500 m. The

number of streamlines within the boundary was kept constant

at ,_ 10 as A was changed. In the bottom panel we can see

Figure 7": Variation of ct ring mass with A for our model and

that of CG. The number of boundary streamlines was kept

constant at 10 and solutions were found for A between 50

to 500 m. Since the number of boundary streamlines is kept

constant, the total number of streamlines needed in each case

is different, with a larger number of streamlines required for

smaller A (N ranges from several hundred to over 1000 in

the cases shown). The CG treatment is more sensitive to the

choice of A. In contrast, our treatment leads to masses that

are roughly constant over A. The top panel demonstrates

that, for our treatment, increasing lambda causes our profiles

to be flatter overall with the overall ring mass remaining

fairly constant. Here srb = 1 cm s-_.

In Fig. (8) we place two 5 km satellites 50 km away from

the ring with zero eccentricity. Furthermore, we average their

positions over one orbit and we treat them like streamlines.

The only difference between this streamline and a regular ring

streamline is that its mass is fixed and its perturbation param-

eter qis = a el where as is a satellite's semimajor axis,
a i --aj '

must be computed for each ring streamline i during evaluation

of the precession term due to self-gravity. It is worth noting

that in this case the ring loses its symmetry. The resulting pro-

file has a larger density peak on the outer edge. This treatment

neglects the role of individual satellite resonances in mantain-

ing the ring edge. A more detailed, self-consistent model is

left for a later paper.
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Figure 8: c_ ring surface density profiles for cases with and

without satellites for our model. The dotted line corresponds

to a case with no satellites and a ,k = 250 m. The solid line

is a surface density profile in which two 5 km satellites have

been placed at a distance of 50 km from the inner and outer

edges of the ring. Both satellites have e = 0 and are treated

as streamlines by averaging their positions over one orbit.

CG's model for the same )_ value is shown for comparison.
--1

For this case, N ----500 and ab = 1 cm s

5 Conclusions

In a dense, cold ring, where a ring particle jam takes place,

the enhanced pressure between the ring streamlines (which

occurs just before the location where their separation is the

narrowest) acts to destroy their alignment and must be coun-

tered by a larger self-gravity term than would be the case in

the presence of differential precession alone, which means that

a larger ring mass is needed if apse-alignment is to be main-

tained. The application of our model to the Uranian a ring

shows that, compared to the previous self-gravity model, we

can increase the mass estimate for this ring by an order of

magnitude. While this model is dependent on the validity of

a poorly known parameter (kc), solutions can be obtained for

a range of plausible parameters, with perhaps more realistic

values for this parameter. It remains to be shown, however,

whether such "jams" occur at all. Since occultation observa-

tions are more consistent with a constant equivalent depth than

a constant equivalent width, they favor a many particle thick

model (French et al. 1991). On the other hand, the jam need

only take place over a short portion of the ring. Furthermore,

Voyager radio observations of optical depth and phase indi-

cate the presence of anomalous phase behavior possibly due

to coherent interaction or close-packing (Gresh 1990).

In the case of a hot ring, we have modeled the velocity

dispersion as a function of azimuth, and we have shown that

it is possible for the pressure terms in a ring with optical

depth close to but less than unity to produce a profile such

that the mass estimate for the ring is again increased by an

order of magnitude. As before, the model parameters were

selected to explain the a ring mass discrepancy. Nevertheless,

it is not easy to identify a mechanism that could lead to the

required azimuthal velocity dispersion profile, which has a

maximum close to the region of largest optical depth. It is

possible, though unlikely, that wakes or other ring structure

developing preferentially in high density regions would pump

the velocity dispersion there by an amount greater than the

increased number of inelastic collisions can dissipate, resulting

in such a profile.

We modify the model of CG and show that proper treat-

ment of the pressure gradient terms near ridge-like edges leads

to equilibrium masses which are weakly dependent on the un-

known value of)_ (the length scale over which the ring's optical

depth drops from order unity to zero). Compared to CG, our

treatment allocates a larger fraction of the total ring mass to-

wards the edges. The resulting equilibrium ring masses for a

10 km ring are increased by a factor of _ 100 with respect to

the self-gravity model so long as the ring velocity dispersion

at the ring edge is about _ 1 cm s- 1. Because heating/cooling

collisional balance is likely to lead to significantly lower ve-

locity dispersions of ,_ 0.1 cm s -], satellite excitation of

panicle eccentricities in the last _ 1 km of the ring is required.

The presence of the shepherd satellites changes the precession

condition for streamlines near the edges as well as maintaining

the ring edge. Because shepherd satellites and ring edges are

linked, the shepherding process has the potential to explain

both the equilibrium ring masses and the ring surface density

radial profiles. More work will be required before we under-

stand the boundary conditions for a narrow, eccentric planetary

ring. Whether such a ring can have a negative eccentricity gra-

dient is presently unknown. We conclude that a modified CG

model holds the best promise of finally making it possible to

quantitatively reconcile observational mass estimates for nar-

row, eccentric rings based on radio occultation constraints of

ring panicle sizes with the dynamical mass estimate based on

the observed ring state.
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